`
eimhee
  • 浏览: 2110238 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

Which Numbers are the Sum of Two Squares?

 
阅读更多
The main goal of today's lecture is to prove the following theorem.

Theorem 1.1   A number $ n$ is a sum of two squares if and only if all prime factors of $ n$ of the form $ 4m+3$ have even exponent in the prime factorization of $ n$.

Before tackling a proof, we consider a few examples.

Example 1.2  

  • <!---->$ 5 = 1^2 + 2^2$.
  • $ 7$ is not a sum of two squares.
  • $ 2001$ is divisible by $ 3$ because $ 2+1$ is, but not by $ 9$ since $ 2+1$ is not, so $ 2001$ is not a sum of two squares.
  • <!---->$ 2\cdot 3^4\cdot 5\cdot 7^2\cdot 13$ is a sum of two squares.
  • $ 389$ is a sum of two squares, since <!---->$ 389\equiv 1\pmod{4}$ and $ 389$ is prime.
  • <!---->$ 21=3\cdot 7$ is not a sum of two squares even though <!---->$ 21\equiv 1\pmod{4}$.

In preparation for the proof of Theorem 1.1, we recall a result that emerged when we analyzed how partial convergents of a continued fraction converge.

Lemma 1.3   If <!---->$ x\in\mathbb{R}$ and <!---->$ n\in\mathbb{N}$, then there is a fraction <!---->$ \displaystyle \frac{a}{b}$ in lowest terms such that $ 0<b\leq n$ and <!---->

$\displaystyle \left\vert x - \frac{a}{b} \right\vert \leq \frac{1}{b(n+1)}.$

Proof. Let <!---->$ [a_0,a_1,\ldots]$ be the continued fraction expansion of $ x$. As we saw in the proof of Theorem 2.3 in Lecture 18, for each $ m$ <!---->

$\displaystyle \left\vert x - \frac{p_m}{q_m}\right\vert
< \frac{1}{q_m \cdot q_{m+1}}.
$

Since $ q_{m+1}$ is always at least $ 1$ bigger than $ q_m$ and $ q_0=1$, either there exists an $ m$ such that <!---->$ q_m\leq n < q_{m+1}$, or the continued fraction expansion of $ x$ is finite and $ n$ is larger than the denominator of the rational number $ x$. In the first case, <!---->

$\displaystyle \left\vert x - \frac{p_m}{q_m}\right\vert
< \frac{1}{q_m \cdot q_{m+1}}
\leq \frac{1}{q_m \cdot (n+1)},$

so <!---->$ \displaystyle \frac{a}{b} = \frac{p_m}{q_m}$ satisfies the conclusion of the lemma. In the second case, just let <!---->$ \displaystyle \frac{a}{b} = x$.

$ \qedsymbol$

Definition 1.4   A representation <!---->$ n=x^2 + y^2$ is primitive if <!---->$ \gcd(x,y)=1$.

Lemma 1.5   If $ n$ is divisible by a prime $ p$ of the form $ 4m+3$, then $ n$ has no primitive representations.

Proof. If $ n$ has a primitive representation, <!---->$ n=x^2 + y^2$, then <!---->

$\displaystyle p \mid x^2 + y^2$    and $\displaystyle \quad \gcd(x,y)=1,
$

so $ p\nmid x$ and $ p\nmid y$. Thus <!---->$ x^2 + y^2 \equiv 0\pmod{p}$ so, since <!---->$ \mathbb{Z}/p\mathbb{Z}$ is a field we can divide by $ y^2$ and see that <!---->

$\displaystyle (x/y)^2 \equiv -1\pmod{p}.
$

Thus the quadratic residue symbol <!---->$ \left(\frac{-1}{p}\right)$ equals $ +1$. However, <!---->

$\displaystyle \left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = (-1)^\frac{4m+3-1}{2} = (-1)^{2m+1} = -1.
$

$ \qedsymbol$

Proof. [Proof of Theorem 1.1] <!---->$ \left(\Longrightarrow\right)$ Suppose that $ p$ is of the form $ 4m+3$, that <!---->$ p^r\mid\mid n$ (exactly divides) with $ r$ odd, and that $ n=x^2 + y^2$. Letting <!---->$ d=\gcd(x,y)$, we have <!---->

$\displaystyle x = dx&apos;, \quad y = dy&apos;, \quad n = d^2 n&apos;
$

with <!---->$ \gcd(x&apos;,y&apos;)=1$ and <!---->

$\displaystyle (x&apos;)^2 + (y&apos;)^2 = n&apos;.
$

Because $ r$ is odd, $ p\mid n&apos;$, so Lemma 1.5 implies that <!---->$ \gcd(x&apos;,y&apos;)>1$, a contradiction.

<!---->$ \left(\Longleftarrow\right)$ Write <!---->$ n=n_1^2 n_2$ where $ n_2$ has no prime factors of the form $ 4m+3$. It suffices to show that $ n_2$ is a sum of two squares. Also note that <!---->

$\displaystyle (x_1^2 + y_1^2)(x_2^2+y_2^2) = (x_1x_2+y_1y_2)^2 + (x_1y_2-x_2y_1)^2,
$

so a product of two numbers that are sums of two squares is also a sum of two squares.1Also, the prime $ 2$ is a sum of two squares. It thus suffices to show that if $ p$ is a prime of the form $ 4m+1$, then $ p$ is a sum of two squares.

Since <!---->

$\displaystyle (-1)^{\frac{p-1}{2}} = (-1)^{\frac{4m+1-1}{2}} = +1,
$

$ -1$ is a square modulo $ p$; i.e., there exists $ r$ such that <!---->$ r^2\equiv -1\pmod{p}$. Taking <!---->$ n=\lfloor \sqrt{p}\rfloor$ in Lemma 1.3 we see that there are integers $ a, b$ such that <!---->$ 0<b<\sqrt{p}$ and <!---->

$\displaystyle \left\vert -\frac{r}{p} - \frac{a}{b}\right\vert \leq\frac{1}{b(n+1)} < \frac{1}{b\sqrt{p}}.
$

If we write <!---->

$\displaystyle c = rb + pa
$

then <!---->

$\displaystyle \vert c\vert < \frac{pb}{b\sqrt{p}} = \frac{p}{\sqrt{p}} = \sqrt{p}
$

and <!---->

$\displaystyle 0 < b^2 + c^2 < 2p.
$

But <!---->$ c \equiv rb\pmod{p}$, so <!---->

$\displaystyle b^2 + c^2 \equiv b^2 + r^2 b^2 \equiv b^2(1+r^2) \equiv 0\pmod{p}.
$

Thus <!---->$ b^2 + c^2 = p$.

分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics